SELF-ASSESSMENT TEST

Time allowed: 1 hour Max. marks: 40

SECTION A

ima l	VA.	国创 企为社	nur stadanut are number	C II	ess 0.131 in the form			
1.			correct option in the	following quest	ions.	$(4\times 1=4)$		
	<i>(i)</i>	Every rational nu		is built made . SES				
		(a) a natural num	mber	(b) an integer				
	(c) a whole number			(d) a real number $\frac{1}{2}$ $\frac{1}{2$				
	(ii)	$\sqrt{8} \times \sqrt{24}$ is eq	ual to					
		(a) $2\sqrt{6}$	(b) $5\sqrt{12}$	(c) $9\sqrt{48}$	$(d) 8\sqrt{3}$			
	(iii)	If $\sqrt{2} = 1.4142$,	then $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$ is equ					
		(a) 2.4142	(b) 5.8282	(c) 0.4142	(d) 0.1718			
	(iv)	Which of the foll	lowing is equal to x ?					
		(a) $x^{\frac{12}{7}} - x^{\frac{5}{7}}$	(b) $12\sqrt{(x^4)^{\frac{1}{3}}}$	$(c) \left(\sqrt[3]{x^2} \right)^{\frac{3}{2}}$	$(d) \ x^{\frac{12}{7}} \times x^{\frac{7}{12}}$			
2.	Fill in the blanks.				$(3\times 1=3)$			
	(i)	0 is a	number.					
	(ii) If x & y are two irrationals numbers then an irrational number albetween them.							
	(iii)	(iii) For every real number, there exists a point on t			oint on the number li	ne.		
3.	The following questions consist of two statements—Assertion (A) and Reason (R). Answer these questions selecting the appropriate option given below: (a) Both A and R are true and R is the correct explanation for A.							
		(b) Both A and R are true and R is not the correct explanation for A.						
		A is true but R i						
	(d)	A is false but R	is true.			$(3\times 1=3)$		
					XI—anifolia Re	al Numbers		

$$\therefore 0.\overline{54} = \frac{6}{11}$$

(ii) Assertion (A):
$$(5+\sqrt{2})+(5-\sqrt{2})$$
 is a rational.

Reason (R): Sum of two irrational numbers may be rational or irrational.

(iii) Assertion (A): A rational number between 4 and 5 is
$$\frac{9}{2}$$

(R): A rational number between two rational numbers a and b is $\frac{a+b}{2}$.

SECTION B

Solve the following questions.

4. Express $0.1\overline{34}$ in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$. [NCERT Exemplastical Section 1.1]

5. If $\sqrt{2} = 1.414$ and $\sqrt{3} = 1.732$, then find the value of $\frac{\sqrt{6} - 1}{\sqrt{3}}$ up to three places of decimal.

6. Simplify:
$$\frac{2+\sqrt{3}}{2-\sqrt{3}} - \frac{2-\sqrt{3}}{2+\sqrt{3}}$$

Solve the following questions.

7. Simplify:
$$(256)^{-\left(4^{\frac{-3}{2}}\right)}$$
 [NCERT Exemplar 8. Show that $\frac{x^{a(b-c)}}{x^{b(a-c)}} \div \left(\frac{x^b}{x^a}\right)^c = 1$.

9. Simplify the following:

$$(i) \quad \frac{1}{\sqrt{3} + \sqrt{2} - \sqrt{5}}$$

(ii)
$$\frac{\sqrt{5}-2}{\sqrt{5}+2} - \frac{\sqrt{5}+2}{\sqrt{5}-2}$$

10. Simplify:

(i)
$$\frac{4\sqrt{2}}{\sqrt{15} - 3\sqrt{2}} + \frac{3\sqrt{5}}{\sqrt{10} - \sqrt{3}} + \frac{5\sqrt{5}}{\sqrt{6} + \sqrt{5}}$$

(ii)
$$128^{\frac{2}{7}} - (625^{-3})^{\frac{1}{4}} + 14(2401)^{\frac{1}{4}}$$

 $(4 \times 3 = 1)$

Solve the following questions.

$$(3\times 4=12)$$

11. Evaluate: $\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} + \dots + \frac{1}{\sqrt{9}+\sqrt{8}}$

12. Find the value of $\frac{1}{\sqrt{3}-\sqrt{2}-1}$ correct to three places of decimal if $\sqrt{2}=1.414$ and $\sqrt{6}=2.45$.

13. If $a = 8 + 3\sqrt{7}$ and $b = \frac{1}{a}$ then what will be the value of $a^2 + b^2$?

Answers

(iii) (c)

(ii)
$$\sqrt{xy}$$
 (ii) (a)

(iii) unique (iii) (a)

4.
$$\frac{133}{290}$$

5. 0.837

6.
$$8\sqrt{3}$$

7.
$$\frac{1}{2}$$

9. (i)
$$\frac{3\sqrt{2} + 2\sqrt{3} + \sqrt{30}}{12}$$
 (ii) $-8\sqrt{5}$

(ii)
$$-8\sqrt{5}$$

10. (i)
$$\frac{168-28\sqrt{30}-96\sqrt{15}+360\sqrt{2}}{21}$$
 (ii) $\frac{-491}{4}$

(ii)
$$\frac{-491}{4}$$

SECTION A

Choose and write the correct option for each of the following questions.

(i) If $p(x) = 3x^2 + 6x - 24$ then p(-2) is

(a) -48

(d) -12

(ii) The value of $300^2 - 299^2$ is

(a) 1^2

(b)499

(d) 599

(iii) One of the factors of $(25x^2 - 1) + (1 + 5x)^2$ is

[NCERT Exemplar]

(b) 5 - x (c) 5x - 1

(d) 10 x

(iv) If x - 2 is a factor of the polynomial $2x^2 + kx - 15$, then the value of k is

(a) 7

Fill in the blanks.

 $(3 \times 1 = 3)$

(i) If (x-2) is a factor of the polynomial p(x), then p(2)

(ii) If $p(x) = x^3 - 2x + 2$ then p(-2) =_____.

(iii) If $p(x) = x^2 - 5x + 4$ and $q(x) = x^3 + 1$ then $p(1) \times q(1)$

The following questions consist of two statements—Assertion(A) and Reason(R). Answer these questions selecting the appropriate option given below:

(a) Both A and R are true and R is the correct explanation for A.

(b) Both A and R are true and R is not the correct explanation for A.

Polynomia

(c) A is true but R is false.

- (d) A is false but R is true.
- (i) Assertion (A): If $p(x) = x^3 + 2x^2 + 3k + 1$ is divided by (x + 1), then remainder is 0.

(R): If polynomial p(x) is divided by (x-a), then remainder is p(a).

(ii) Assertion (A): $a^3 - 2\sqrt{2} b^3 = (a - \sqrt{2}b)(a^2 + \sqrt{2}ab + 2b^2)$

(R) : $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

(iii) Assertion (A): If $\frac{a}{b} + \frac{b}{a} = -1$, then the value of $(a^3 - b^3)$ is 0.

(R) : $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

SECTION B

Solve the following questions.

- 4. Find the value of the polynomial $3x^3 4x^2 + 7x 5$ when x = 3.
- If $p(x) = x^3 4x + 3$, evaluate $p(2) p(-1) + p(\frac{1}{2})$.
- **6.** If $p(x) = 10x 4x^2 3$, and q(x) = (x + 2)(x 2). Then find the value of $p(0) \times q(3)$.

Solve the following questions.

 $(4 \times 3 = 12)$

- 7. Find the remainder when $p(x) = x^3 2x^2 4x 1$ is divided by g(x) = x + 1.
- 8. For what value of m, is $x^3 2mx^2 + 16$ divisible by x 2?
- **9.** Simplify: $(2x 5y)^3 (2x + 5y)^3$
- 10. If x 2 and $x \frac{1}{2}$ are factors of $px^2 + 5x + r$, show that p = r.

Solve the following questions.

- 11. If a, b, c are all non-zeros and a + b + c = 0, prove that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$.
- **12.** If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 3$ abc = -
- **13.** Prove that $(a + b + c)^3 a^3 b^3 c^3 = 3(a + b)(b + c)(c + a)$.

Answers

- 1. (i) (c)
- (iii) (d)
- (iv) (d)

- 2. (i) 0
- (ii) -2

(ii) (d)

(iii) 0

- 3. (i) (d)
- (ii) (a)
- (iii) (a)

- 4. 61
- 5. $-\frac{15}{8}$
- 6. -15
- 7. 0

9. $-120 x^2 y - 250 y^3$

Max. marks: 40

SECTION A

1. Choose and write the correct option in the following questions. (i) The equation x = 4 in two variables can be written as $(4 \times 1 = 4)$ (a) 1.x + 1.y = 4(b) x + 0.y = 4(c) 0.x + 1.y = 4 $(d) \ 0.x + 0.y = 4$ (ii) The linear equation 2x - 4y = 8 has (a) A unique solution (b) Two solutions engineering universal and arrive a (c) Infinitely many solutions (d) No solutions (iii) The equation 2x + 5y = 7 has a unique solution if x, y are [NCERT Exemplar] (a) Natural numbers (b) Positive real numbers (c) Real numbers (d) Rational numbers (iv) The graph of the linear equation 2x + 3y = 8 cuts the x-axis at the point (d) $\left(0,\frac{8}{3}\right)$ (b)(0,4)2. Fill in the blanks. (i) The graph of the line x = -2 is parallel to _____ axis and is perpendicular to _____ axis. (ii) If the line x + 3y = a passes through (-2, 2) then the value of a _____. (iii) The equation 3x + y = 7 meets x-axis at the point ____ and y-axis at the point_ 3. The following questions consist of two statements—Assertion(A) and Reason(R). Answer these questions selecting the appropriate option given below: (a) Both A and R are true and R is the correct explanation for A. (b) Both A and R are true and R is not the correct explanation for A. (c) A is true but R is false. (d) A is false but R is true. $(3 \times 1 = 3)$ (i) Assertion(A): x + y = 6 is the equation of a line passing through the origin. **Reason** (R): Any equation of the form y = mx passes through the origin. (ii) Assertion(A): The graph of the linear equation 2x + 5y = 10 meets the y-axis at the point (0, 2). (R): Any linear equation ax + by + c = 0 meets the y-axis when its x co-ordinate is 0. (iii) Assertion (A): The point (b, 3) lies on the graph of linear equation 2x - 3y + 11 = 0 then b = -1. : Any line parallel to y-axis is x = k. Reason (R) SECTION B

Solve the following questions.

 $(3\times2=6)$

- **4.** Find there solution of the equation 2x + 3y = 5
- 5. If the point (4, -2) lies on the graph of 2x = ay + 3, then find the value of a.
- **6.** Express y in terms of x and check whether the point (-3, -2) lies on the line or not 3x 2y + 5 = 0.

 $(4\times3=12)$

Solve the following questions. 7. Express the following linear equation in the form ax + by + c = 0 and indicate the value of $a_{,b}$

and c:
$$\frac{x}{2} + y - 5 = 0$$

8. Solve for x: $3x+11+\frac{x}{9}=\frac{-7}{9}+18$. What will be the graph of the equation?

9. Check by substituting whether x = -6 and y = -3 is a solution of equation 2(x-1) - 5y = 1 or not. Find one more solution. How many more solutions can you find?

10. Draw the graph of the linear equation 2x = y + 3. At what points the graph of the equation cut the x-axis and the y-axis.

Solve the following questions.

 $(3 \times 4 = 12)$

The cost of petrol in a city is ₹50 per litre. Set up a linear equation with x representing the number of litres and y representing the total cost (in rupees). Also draw its graph.

The force exerted to pull a cart is directly proportional to the acceleration produced in the body Express the statement as a linear equation of two variables and draw the graph of the same by taking the constant mass equal to 6 kg. Read from the graph, the force required when the acceleration produced is

(i)
$$6 \text{ m/s}^2$$

$$(ii)$$
 5 m/s²

[NCERT Exemplar]

13. Draw the graph of x = 3y - 4. Find the:

(i) value of y when x = -1.

(ii) value of x when y = 5.

Answers

$$(iii)$$
 (a) (iv) (c)

2.
$$(i) y ; x$$
 $(ii) 4$

$$(iii) \left(\frac{7}{3}, 0\right) (0, 7)$$

$$(iii)$$
 (b)

4.
$$\left(0, \frac{5}{3}\right), \left(\frac{5}{3}, 0\right), \left(2, \frac{1}{3}\right)$$
 5. $a = -\frac{5}{2}$ **6.** $y = \frac{3x+5}{2}$, Yes

5.
$$a = -\frac{5}{2}$$

6.
$$y = \frac{3x+5}{2}$$
, Yes

9. Yes,
$$x = 4$$
, $y = 1$, infinite 10. $\left(\frac{3}{2}, 0\right)$, $(0, -3)$ 11. $y = 50x$

7.
$$\frac{x}{2} + y - 5 = 0$$
, $a = \frac{1}{2}$, $b = 1$, $c = -5$ 8. $x = 1$, the graph is a line parallel to y-axis 12. (2) 1. $(3, 0)$, $(0, -3)$ 11. $y = 50$

13.(*i*)
$$y = 1$$
 (*ii*) 11

12.
$$x - 6y = 0$$
 (i) 36N (ii) 30N

 $(4\times 1=4)$

he allowed: 1 hour

S S

SECTION A

1. Choose and write the correct option in the following questions.

	(i) Point (5, -3) lies in the	(b) Second quadrants						
	(a) First quadrant	(d) Fourth quadrants						
	(c) Third quadrant							
	(ii) The point at which the two co-ordinate (a) abscissa (b) ordinate	(c) origin	(d) quadrant					
	(iii) If x-coordinate of a point is zero, then this point always lies							
	(a) in I quadrant	(b) in II quadrant						
	(c) on x-axis	(d) on y-axis						
	(iv) Abscissa of a point is positive in							
	(a) I & II quadrant	(b) I & IV quadrants						
	(c) I quadrant	(d) II quadrant only						
2.	Fill in the blanks.		$(3 \times 1 = 3)$					
	(i) Equation of y-axis in							
	(ii) Co-ordinate of origin							
	(iii) Point (-2, -3) lies in quad	drant. At monroes onil s						
3.	The following questions consist of two sta		nd Reason(R). Answer these					
	questions selecting the appropriate optio							
	(a) Both A and R are true and R is the c							
	(b) Both A and R are true and R is not t(c) A is true but R is false.	ne correct explanation for	or A.					
	(d) A is false but R is true.							
		,	$(3 \times 1 = 3)$					
	(i) Assertion (A): The point which	lies on the line $y = 3x$ havi	ng abscissa 2 is (2, 6).					
	Reason (R): A line parallel to							
	(ii) Assertion (A): If $a \neq b$, then (a, b)							
	Reason (R): $(-3, 2)$ lies in quadrate	drant IV.						
	(iii) Assertion (A): The point $A (-5, -5)$	0) lies on x-axis						
	Reason (R): Every point on x -	axis is of the form $(x, 0)$.						
		TION B						
olve	e the following questions.							
4.	Plot the following points							
	Plot the following points and check whether (i) (2, -4) and (3, 6), and (-1, 2) (ii) (1, 1) (2, -3) (1, 0)	er these are coll:	$(3\times 2=6)$					
	(ii) $(1, 1), (2, -3), (-1, -2)$	tare comnear or n	lot:					
5.	Plot the point P less $(4 - C)$							
	respectively. Write the coordinate of the respectively.	Iraw PM and						
	anates of the pe	oints M and M perper	ndicular to					
	(ii) $(1, 1), (2, -3), (-1, -2)$ Plot the point P less $(4, -6)$ and from it or respectively. Write the coordinates of the point P	and IV.	to x-axis and y-axis					

points (x, y) given in the following table. Use scale 1 cm = 0.25 units.[NCERT Exemplar] 6. Plot the

e pon	1.25	0.25	1.5	-0.75
y	-0.5		1.5	-0.25

 $(4 \times 3 = 12)$

r sohe the following questions. (4 × 3 = 12) The points (-3, 0), (5, 0) and (0, 4) on Cartesian plane. Name the figure formed by joining points and find its area. these points and find its area.

- 8 In which quadrant or on which axis does each of the following points lie?
- (-4,2), (3,-2), (4,0), (3,3), (-4,-5)
- $\frac{1}{3}$ Three vertices of a rectangle are (-1, 1), (5, 1) and (5, 3). Plot these points and find the coordinates of the fourth vertex.
- 10. Find some ordered pairs (x, y) such that x + 3y = 6 and plot them. How many such ordered pairs can be found and plotted?

Solve the following questions.

 $(3 \times 4 = 12)$

- 11. Write the coordinates of the vertices of a square whose each side is 5 units, one vertex at (2, 1) and all the vertices lie in the same quadrant.
- 12. Draw the quadrilateral with vertices (-4, 4), (-6, 0), (-4, -4), (-2, 0). Name the type of quadrilateral and find its area.
- 13. Plot the points P(1, 0), Q(4, 0) and S(1, 3). Find the coordinates of the point R such that PQRS is a square. [NCERT Exemplar]

Answers

- 1. (i) (d) (ii) (c)
- (iii) (d)
- (iv) (b)

- 2. (i) x = 0(ii) (0,0)
- (iii) III
- 3. (i) (b) (ii) (c)
- (iii) (a)
- 4. (i) yes (ii) No
- 5. M(4,0), N(0,-6)
- 7. Triangle; 16 sq. units
- 8. II quadrant, IV quadrant, x-axis, I quadrant, III quadrant
- **9.** (-1, 3)

- 10, (0, 2), (6, 0), (3, 1); infinite 11. (7, 1), (7, 6), (2, 6)
 - 12. Rhombus, 16 square units
- **13.** (-1, 3)